If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+15w-225=0
a = 1; b = 15; c = -225;
Δ = b2-4ac
Δ = 152-4·1·(-225)
Δ = 1125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1125}=\sqrt{225*5}=\sqrt{225}*\sqrt{5}=15\sqrt{5}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15\sqrt{5}}{2*1}=\frac{-15-15\sqrt{5}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15\sqrt{5}}{2*1}=\frac{-15+15\sqrt{5}}{2} $
| 1,105=(x+25)13 | | 1/3x+3=26+16/8x-23 | | 15z-6=11z-50 | | 26=17p | | 12m+20=175 | | l-0.02=-0.006 | | X+27=3x-39 | | 26=2(q-72) | | 5x−4=x−2 | | s+38=-14 | | 5x−4 =x−2 | | 6+9x=69 | | 5x+13=83-7x | | 6p-8=-8p-3p+18 | | z/2=13=3 | | r+2/3=-1/3 | | 3(r-77)=60 | | n+6.7=2.2 | | 8x-3(2x+4)=10 | | 8(3.75)-2c=32 | | h-4.7=3.9 | | 800=300+300r | | k-4.7=3.9 | | x/4-12=9 | | 20k+80=10k=100 | | 9x+14x-9=13 | | 3x-2=38x-47 | | w+337=45 | | 9(b-88)=90 | | -3(x+4)+x+1=23 | | 15+7n+3=18+7n | | (11x-29)=(11x-31) |